

DATASHEET MGBT1-C

Product specifications

MGBT1-C

1000BASE-T copper SFP Transceiver

Product Features

- ✓ Up to 1.25Gb/s bi-directional data links
- ✓ Hot-pluggable SFP footprint
- ✓ Extended case temperature range (-5°C to +85°C)
- ✓ Fully metallic enclosure for low EMI
- ✓ Low power dissipation (1.05W typical)
- ✓ Compact RJ-45 connector assembly
- ✓ Access to physical layer IC via 2-wire serial bus
- ✓ 1000 BASE-T operation in host systems with SERDES interface
- ✓ 10/100/1000Mbps compliant in host systems with SGMII interface

Applications

✓ 1Gigabit Ethernet over Cat 5 cable

SFP to Host Connector Pin Out

PIN	Symbol	Name/Description	Ref.
1	VeeT	Transmitter ground (common with receiver ground)	1
2	TFAULT	Transmitter Fault. Not supported	
3	TDIS	Transmitter Disable. PHY disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for serial ID	3
5	MOD_DEF(1)	Module Definition 1. Clock line for serial ID	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication	4
9	VeeR	Receiver ground (common with transmitter ground)	1
10	VeeR	Receiver ground (common with transmitter ground)	1
11	VeeR	Receiver ground (common with transmitter ground)	1
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	VeeR	Receiver ground (common with transmitter ground)	1
15	VccR	Receiver Power Supply	
16	VccT	Transmitter power supply	
17	VeeT	Transmitter ground (common with receiver ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC coupled	
19	TD-	Transmitter Inverted DATA in. AC coupled	
20	VeeT	Transmitter ground (common with receiver ground)	1

Notes:

- 1. Circuit ground is connected to chassis ground
- 2. PHY disabled on TDIS > 2.0V or open, enabled on TDIS < 0.8V
- Should be pulled up with 4.7k 10k Ohms on host board to a voltage between 2.0 V and 3.6V.MOD_DEF(0) pulls line low to indicate module is plugged in.
- 4. LVTTL compatible with a maximum voltage of 2.5V. Not supported on GE-GB-P.

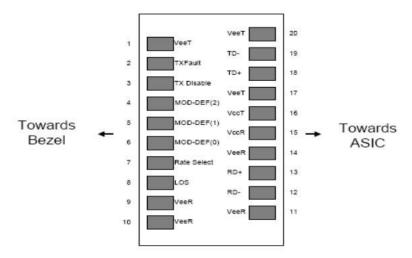


Figure 1. Diagram of host board connector block pin numbers and names

+3.3V Volt Electrical Power Interface

The GE-GB-P has an input voltage range of 3.3 V +/- 5%. The 4 V maximum voltage is not allowed for continuous operation.

+3.3 Volt Electrical Power Interface											
Parameter	Symbo	Min	Ty Ma		Unit	Notes/Conditions					
T arameter	1		р	X	S	Notes/Oonations					
Supply	la		32	375	m۸	1.2W max power over full range of voltage					
Current	ls		0	375	mA	and temperature See caution note below					
Input Voltage	Vcc	Vee	Vee	Vee	Vee	xc 3.1 3.3 3.4 V	V	Referenced to GND			
input voltage		3	3.3 7	7	V	Referenced to GND					
Maximum	Vmax			4	V						
Voltage	VIIIax			4	V						
Surge	lauran		20	30		Hot plug above steady statecurrent. See					
Current	Isurge			30	mA	caution note below					

Caution: Power consumption and surge current are higher than the specified values in the SFP MSA

Table 2. +3.3 Volt electrical power interface

Low-Speed Signals

MOD_DEF(1) (SCL) and MOD_DEF(2) (SDA), are open drain CMOS signals (see section VII, "Serial Communication Protocol"). Both MOD_DEF(1) and MOD_DEF(2) must be pulled up to host_Vcc.

Low-Speed Signals, Electronic Characteristics										
Parameter	Symbo I	Min	Max	Unit s	Notes/Conditions					
SFP Output LOW	VOL	0	0.5	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector					
SFP Output HIGH	VOH	host_Vcc - 0.5	host_Vcc + 0.3	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector					
SFP Input LOW	VIL	0	0 0.8		4.7k to 10k pull-up to Vcc, measured at SFP side of connector					
SFP Input HIGH	VIH	2	Vcc + 0.3	V	4.7k to 10k pull-up to Vcc, measured at SFP side of connector					

Table 3. Low-speed signals, electronic characteristics

High-Speed Electrical Interface

All high-speed signals are AC-coupled internally.

High-Speed Electrical Interface, Transmission Line-SFP										
Parameter	Symbo	Mi	Ту	Ма	Unit	Notes/Conditions				
Falameter	I	n	р	X	S	Notes/Conditions				
	fL		12		MHz	5 lovel encoding per IEEE 802.2				
Line Frequency	IL		5			5-level encoding, per IEEE 802.3				
Tx Output	Zout,T		10		Ohm	Differential, for all Frequencies between				
Impedance	Х		0		Ohm	1MHz and 125MHz				
Rx Input			10		Ohm	Differential, for all Frequencies between				
Impedance	Zin,RX		0		Ohm	1MHz and 125MHz				

Table 4. High-speed electrical interface, transmission line-SFP

High-Speed Electrical Interface

Host-SFP										
Parameter	Symbol	Min	Тур	Max	Units	Notes/Condition s				
Single ended data input swing	Vinsing	250		1200	mV	Single ended				
Single ended data output swing	Voutsing	350		800	mV	Single ended				
Rise/Fall Time	Tr,Tf		175		psec	20%-80%				
Tx Input Impedance	Zin		50		Ohm	Single ended				
Rx Output Impedance	Zout		50		Ohm	Single ended				

Table 5. High-speed electrical interface, host-SFP

General Specifications

General											
Parameter	Symbo I	Mi n	Ту р	Max Units		Notes/Conditions					
Data Rate	BR	10		100 0	Mb/se c	IEEE 802.3 compatible. See Notes 2 through 4 below					
Cable Length	L			100	m	Category 5 UTP. BER <10-12					

Table 6. General specifications

Notes:

1. Clock tolerance is +/- 50 ppm

2. By default, the GE-GB-P is a full duplex device in preferred master mode

3. Automatic crossover detection is enabled. External crossover cable is not required

4. 1000 BASE-T operation requires the host system to have an SGMII interface

with no clocks, and the module PHY to be configured per Application Note AN-2036.

With a SERDES that does not support SGMII, the module will operate at 1000BASE-T only.

Environmental Specifications

The MGBT1-C has an extended range from 0°C to +85°C case temperature as specified in Table 8.

Environmental Specifications										
ParameterSymbolMinTypMaxUnitsNotes/Conditions										
Operating Temperature	Тор	-5		85	°C	Case temperature				
Storage Temperature	Tsto	-40		85	°C	Ambient temperature				

 Table 7. Environmental specifications

Mechanical Specifications

The host-side of the MGBT1-C conforms to the mechanical specifications outlined in the SFP MSA1. The front portion of the SFP (part extending beyond the face plate of the host) is larger to accommodate the RJ-45 connector. See Figure 2 below for details.

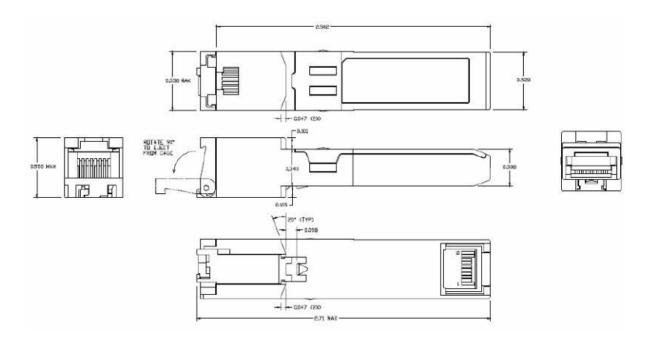


Figure 2. MGBT1-C mechanical dimensions

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA),
- 2. IEEE Std 802.3, 2002 Edition. IEEE Standards Department, 2002.
- 3. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E2PROM", Atmel Corporation.