

DATASHEET AXM763-10000S-C

Product specifications

AXM763-10000S-C 10Gbps 220m Multi Mode Datacom SFP+ Transceiver

Features

- Supports 9.95 to 10.3Gbps bit rates
- Transmission distance up to 220m (OM1 fiber)
- Hot Pluggable SFP+ footprint
- 1310nm FP transmitter, PIN photo-detector
- Digital Status monitoring Interface
- Duplex LC connector
- RoHS compliant and Lead Free
- Metal enclosure for lower EMI
- Single 3.3V power supply
- Power dissipation < 1W
- Operating case temperature: 0 to 70...
- Compliant with FC-PI-4 800-Mx-SN-I, SFF-8431, SFF-8432 and SFF-8472

Applications

- 10GBASE-LRM 10G Ethernet
- Legacy FDDI multimode links

Absolute maximum rating

These values represent the damage threshold of the module. Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions.

Parameters	Symbol	Min.	Max.	Unit
Power SupplyVoltage	V _{CC}	0	+3.6	V
StorageTemperature	Тс	-40	+85	°C
Operating Case Temperature	Тс	0	+70	°C
Relative Humidity	RH	5	95	%

Recommended operating environment

Recommended Operating Environment specifies parameters for which the electrical and optical characteristics hold unless otherwise noted.

Parameter	Symbol	Min.	Typical	Max	Unit
Power SupplyVoltage	V _{CC}	3.135	3.300	3.465	V
Operating Case Temperature	Tc	0	25	70	°C

LOW Speed Characteristics

Parameter	Symbol	Min.	Typical	Max	Unit
PowerConsumption			0.8	1	W
	VOL	0		0.4	V
TX_Fault,RX_LOS	VOH	Host_Vcc-0.5		Host_Vcc+0.3	V
	VIL	-0.3		0.8	V
TX_DIS	VIH	2.0		VCCT+0.3	V
500 504	VIL	-0.3		0.8	V
RS0,RS1	VIH	2.0		VCCT+0.3	V

RAPIDCON®

Electrical characteristics

Parameter	Conditions	Symbol	Min.	Typical	Max	Unit
Nominal Data Rate		VID		10.3125		Gbps
Supply Voltage		Vcc	3.14		3.46	V
Supply Current		Icc		200	300	mA
PowerDissipation		Р			1	W
	Tr	ansmitter				
Input differential impedance	2	Rin		100		Ω
Single ended data input swing	3	Vin,pp	90		350	mV
Transmit Disable Voltage	4	VD	2		Vcc	V
Transmit Enable Voltage		Ven	Vee		Vee+ 0.8	V
	I	Receiver				
Termination Mismatch at 1 MHz		ΔZ_M			5	%
Single Ended Output Voltage Tolerance			-0.3		4.0	V
Output AC Common Mode Voltage					7.5	mV RMS
Output Rise and Fall time (20% to 80%)	5	Tr, Tf	30			Ps
Relative Noise LRM Links with crosstalk	6	dRNx			TBD equation	dB/Hz
Difference Waveform Distortion Penalty	7	dWDP		per SFF-8431		dB
Differential Voltage Modulation Amplitude		VMA	180		600	mV
LOS Fault	8	VLOS fault	2		Vcchost	V
LOS Normal	8	VLOS norm	Vee		Vee+ 0.8	V
Power Supply Noise Tolerance	9	VccT/VccR		per SFF-8431		mVpp

Notes:

1. Non-condensing.

2. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.

3. Per SFF-8431 Rev 3.0

4. Into 100 ohms differential termination.

5. Measured with Module Compliance Test Board and OMA test pattern.

6. Crosstalk source rise/fall time (20%-80%) is 35 ps.

7. Defined with reference receiver with 14 T/2 spaced FFE taps and 5 T spaced DFE taps.

8. LOS is an open collector output. Should be pulled up with $4.7k - 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V.

9. As described in Section 2.8.1, SFF-8431 Rev 3.0.

General Specifications

Para	meter	Symbol	Min.	Typical	Max	Unit	Notes
Bit F	Rate	BR		10.3125		Gb/sec	1
Bit Erro	or Ratio	BER			10-12		2
		Maximu	ım Suppo	rted Distances			
Fiber Type	1310nm OFL Bandwidth						
60 Fure	"FDDI" 160MHz/km	1			220		<u>,</u>
62.5µm	OM1 200MHz/km	Lmax			220	m	3
	400MHz/km				100		
50µm	OM2 500MHz/km	Lmax			220	m	3
	OM3 2000MHz/km				220		

Notes:

1. 10GBASE-LRM

2. Tested with a 231 – 1 PRBS

3. Operating range as defined by IEEE standards. Longer reach possible depending upon link implementation.

Optical characteristics

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
Transmitter						
Center Wavelength	λt	1260		1355	nm	
	λrms @1260nm			2.4		
RMS spectral width	λrms @ 1260nm-1300	-	-	2.4	nm	2
	λrms @ 1300nm-1355			4		
Average Optical Power	Pavg	-6.5	-	0.5	dBm	1
Extinction Ratio	ER	3.5	-	-	dB	
Optical Modulation Amplitude (OMA)	POMA	-4.5		+1.5	dBm	
Peak Launch Power	PMAX			3	dBm	
Transmitter Waveform Dispersion Penalty	TWDP			4.7	dB	3
Average Launch power of OFF transmitter	POFF			-30	dBm	
Uncorrelated Jitter [rms]	Txj			0.033	UI	
Encircled Flux	<5µm	30			0/	
	<11µm	81			70	
Transmitter Reflectance				-12	dB	
Optical Return Loss Tolerance		20			dB	
Relative Intensity Noise	Rin			-128	dB/Hz	
		Receiv	er			
Comprehensive Stressed	Precursor	-	-	-6.5	dBm	
Receiver Sensitivity (OMA) @	Symmetrical			-6	dBm	5
10.3125Gb/s	Postcursor			-6.5	dBm	
LOS Assert	LosA	-30	-		dBm	
LOS De-assert	LosD			-11	dBm	
Overload	Рмах	+1.5	-		dBm	4
Receiver Reflectance		-	-	-12	dB	
LOS Hysteresis		0.5			dB	

Notes:

1. Average power figures are informative only, per IEEE802.3aq

2. Maximum RMS spectral width as specified by Figure 3

 Optical Eye Mask requires the host board to be SFF-8431 compliant. Optical eye mask per IEEE802.3aq.
TWDP figure requires the host board to be SFF-8431 compliant. TWDP is calculated using the Matlab code provided in clause 68.6.6.2 of IEEE802.3aq

5. Receiver overload specified in OMA and under the worst comprehensive stressed condition.

6. Conditions of stressed receiver tests per IEEE802.3aq. CSRS testing requires the host board to be SFF-8431 compliant.

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF8472 Rev9.2 with internal calibration mode. For external calibration mode please contact our sales stuff.

Parameter	Symbol	Min.	Max	Unit	Notes	
Accuracy						
Transceiver Temperature	DMI_Temp	-3	+3	degC	Over operating temp	
TX Output optical power	DMI_TX	-3	+3	dBm		
RX Input opticalpower	DMI_RX	-3	+3	dBm	-3dBm to -12dBm range	
Transceiver Supply voltage	DMI_VCC	-0.08	+0.08	V	Full operating range	
Bias currentmonitor	DMI_Ibias	-10%	10%	mA		
	Dynamic Rang	eAccura	су			
Transceiver Temperature	DMI_Temp	-5	70	degC		
TX Output optical power	DMI_TX	-9	-1	dBm		
RX Input optical power	DMI_RX	-18	0	dBm		
Transceiver Supply voltage	DMI_VCC	3.0	3.6	V		
Bias currentmonitor	DMI_Ibias	0	70	mA		

Module Contact Assignment

Pin definition

Pin	Symbol	Name/Description
1	VEET [1]	TransmitterGround
2	Tx_FAULT [2]	TransmitterFault
3	Tx_DIS [3]	Transmitter Disable. Laser output disabled on high or open
4	SDA [2]	2-wire Serial Interface Data Line
5	SCL [2]	2-wire Serial Interface Clock Line
6	MOD_ABS [4]	Module Absent. Grounded within the module
7	RS0 [5]	Rate Select 0
8	RX_LOS [2]	Loss of Signal indication. Logic 0 indicates normal operation
9	RS1 [5]	Rate Select 1
10	VEER [1]	Receiver Ground
11	VEER [1]	Receiver Ground
12	RD-	Receiver Inverted DATA out. AC Coupled
13	RD+	Receiver DATA out. AC Coupled
14	VEER [1]	Receiver Ground
15	VCCR	Receiver PowerSupply
16	VCCT	Transmitter Power Supply
17	VEET [1]	TransmitterGround
18	TD+	Transmitter DATA in. AC Coupled
19	TD-	Transmitter Inverted DATA in. AC Coupled
20	VEET [1]	TransmitterGround

Notes:

[1] Module circuit ground is isolated from module chassis ground within the module.

[2].should be pulled up with 4.7 k - 10 k ohms on host board to a voltage between 3.15 V and 3.6 V. [3]Tx_Disable is an input contact with a $4.7 \text{k}\Omega$ to $10 \text{k}\Omega$ pullup to VccT inside the module. [4]Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range 4.7 kΩ to10 kΩ.Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.

[5] RS0 and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module

Host-Module Interface

Regulatory Compliance RAPIDCON SFP+ transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 annd Laser Notice No. 50	1120292-000
Product Safety	UL	UL and CUL EN60950-2:2007	E347511
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ1001008918/CHEM
EMC	WALTEK	EN 55022:2006+A1:2007 EN 55024:1998+A1+A2:2003	WT10093759-D-E-E